## Research Summary

Jiawei Sun<br>Electrical and Computer Engineering<br>University of Michigan

September, 2019

## Outline

(1) Differential Microphones Arrays based on Differential Equation

- Linear DMA
- Circular DMA
(2) Distributed Algorithms of PCA
- Backgrounding
- Average Consensus Algorithm
- Distributed PCA


## Outline

(1) Differential Microphones Arrays based on Differential Equation

- Linear DMA
- Circular DMA
(2) Distributed Algorithms of PCA
- Backgrounding
- Average Consensus Algorithm
- Distributed PCA


## Backgrounding

- Why we need Distributed Algorithms of PCA (D-PCA)?
(1) data are collected/stored in a distributed network
(2) memory limitation
(3) privacy issue
(9) parallel clusters
- How D-PCA work for parallel processors?
(1) each node calculates its local value of PCA
(2) communicate with its neighbor nodes
(3) update with a weighted average of its neighbors values
- Application
(1) classify word documents
(2) array processing


## Backgrounding

## Two Types of Data Model

- The designs of D-PCA algorithms differ in how data are divided in the network:
(1) Distributed columns observations (DCO)
(2) Distributed rows observations (DRO)


Distributed Row Observations (DRO)
Figure: Data Model

## Backgrounding

## Two Types of Data Model

- The DCO setting assumes that each agent observes a subset of columns of $X \in C^{N * T}$ :

$$
X=\left(X_{1}^{c}, X_{2}^{c}, \ldots, X_{S}^{c}\right)
$$

where $X_{i}^{c} \in C^{N * T i}$ is the column-partitioned sub-matrix and $\sum_{i=1}^{S} T_{i}=T$.

- DCO applies when high-dimension data are stored in different sites in a network.


## Backgrounding

## Two Types of Data Model

- The DRO setting assumes that each agent observes only a subset of rows of $X \in C^{N * T}$ :

$$
X=\left(\left(X_{1}^{r}\right)^{T},\left(X_{2}^{r}\right)^{T}, \ldots,\left(X_{S}^{r}\right)^{T}\right)^{T}
$$

where $X_{i}^{r} \in C^{N i * T}$ is the column-partitioned sub-matrix and $\sum_{i=1}^{S} N_{i}=N$.

- DRO applies when data have a multidimensional time series and each sample is distributed across the nodes.


## Backgrounding

## Two Types of Communication Model

- The designs of D-PCA algorithms also differ in the types of communication among each node:
(1) master-slave type
(2) mesh type


Figure: Communication Model

## Backgrounding

## Two Types of Communication Model

- How master-slave model work?
(1) in local stage, each slave node solves a local PCA
(2) send local PCA results to the master node
(3) in global stage, the master node computes the global PCA from the aggragated data
- How mesh model work?
(1) all nodes and links perform the same function
(2) all nodes exchange partial computations
(3) transmitting information from one node to another may require multihop communications


## Outline

(1) Differential Microphones Arrays based on Differential Equation

- Linear DMA
- Circular DMA
(2) Distributed Algorithms of PCA
- Backgrounding
- Average Consensus Algorithm
- Distributed PCA


## Average Consensus Algorithm

- Why need Average Consensus(AC) Algorithm?

In D-PCA algorithm, the key is to aggregate and share information across nodes.

- For master-slave model, we can centralize information in master node.
- For mesh model, this has to be done with a sequence of computation steps adaptable to the network structure.

We cannot centralize information directly in mesh model, so we take the iterative method to aggregate data

## Average Consensus Algorithm

- Assume that the system of N sensor nodes is connected through a communication network. It is modeled by a graph whose topology is represented by the corresponding Laplacian matrix L.[4]
- The elements of matrix $L$ [5]

$$
\iota_{i j}=\left\{\begin{array}{l}
d_{j}, i=j \\
-1, i \text { communicates with } \mathrm{j} \\
0, \text { else }
\end{array}\right.
$$

where $d_{j}$ is the number of its neighbor.

- Let $W=I-\varepsilon L$. The following linear iterative algorithm :

$$
\begin{aligned}
& x_{j}(t+1)=W_{j j} x_{j}(t)+\sum_{k \in N} W_{j k} x_{k}(t) \\
& x(t+1)=W x(t)
\end{aligned}
$$

## Average Consensus Algorithm

- $W 1=1$, so the eigenvector is 1 and eigenvalue is 1 . The second largest eigenvalue of $\mathrm{W}, \lambda_{2}<1$.
- No matter what the initial node values are, we must have

$$
\lim _{t \rightarrow \infty} x(t)=\lim _{t \rightarrow \infty} W^{t} x(0)=\frac{1}{n} 11^{T} x(0)
$$

- All elements in $x(t)$ are the same, and are the average of $x(0)$ elements.
- Therefore, by AC algorithm, each node only need to communicates with its neighbor nodes. After iterationwe can compute the average of all nodes.


## Outline

(1) Differential Microphones Arrays based on Differential Equation

- Linear DMA
- Circular DMA
(2) Distributed Algorithms of PCA
- Backgrounding
- Average Consensus Algorithm
- Distributed PCA


## Distributed PCA

## PDMM for DCO

- A distributed PCA method can be obtained by simply approximating the global correlation matrix via the AC subroutine,

$$
\begin{equation*}
\hat{R}_{u, i}=N \cdot A C\left(\left\{u_{i} u_{i}^{T}\right\}_{i=1}^{N} ; L\right) \approx R_{u} \tag{31}
\end{equation*}
$$

- In other words, each agent obtains an approximate of the global correlation matrix and the desired PCA can be then computed from $\hat{R}_{u, i}$.


## Distributed PCA

## PDMM for DCO

- Eigenvalue decomposition of $R_{x}$ and reduce its dimension to p-dim.

$$
\begin{equation*}
R_{u}=\sum_{i=1}^{N} \lambda_{i} u_{i} u_{i}^{T} \xrightarrow{\text { reduce dim }} R_{u} \approx \sum_{i=1}^{P} \lambda_{i} u_{i} u_{i}^{T} \tag{32}
\end{equation*}
$$

- Supposed that we have N distributed nodes, so the optimization problem is

$$
\begin{align*}
& \min \sum_{i \in V}-x_{i}^{T} R_{u} x_{i} \\
& \text { s.t. } x_{i}^{T} x_{i}=1, i \in V  \tag{33}\\
& x_{i}=x_{j}, \forall(i, j) \in E
\end{align*}
$$

## Distributed PCA

## PDMM for DCO

- The PDMM [7] solves problem in this form:

$$
\begin{align*}
& \min \sum_{i \in V} f_{i}(x)  \tag{34}\\
& \text { s.t. } A_{i j} x_{i}+A_{i j} x_{j}=c_{i j}, \quad \forall(i, j) \in E
\end{align*}
$$

where

$$
\begin{gather*}
f_{i}(x)=-u_{i}^{T} R_{x} u_{i}  \tag{35}\\
\left\{\begin{array}{c}
A_{i j}=l, i<j \\
A_{j i}=-l, \text { others }
\end{array}\right.  \tag{36}\\
c_{i j}=0 \tag{37}
\end{gather*}
$$

## Distributed PCA

## PDMM for DCO

- We denote $\delta$ as the Lagrangian multiplier, and the Lagrangian of this primal problem can be constructed as

$$
\begin{equation*}
L_{p}(x, \delta)=\sum_{(i, j) \in E} \delta_{i j}^{T}\left(c_{i j}-A_{i j} x_{i}-A_{j i} x_{j}\right)+\sum_{i \in V}\left[f_{i}\left(x_{i}\right)+\theta_{i}^{T}\left(1-x_{i}^{T} x_{i}\right)\right] \tag{38}
\end{equation*}
$$

- The Augmented Primal-Dual Lagrangian function is

$$
\begin{equation*}
L_{P}=\sum_{i \in V}\left[f_{i}\left(x_{i}\right)-\sum_{j \in N(i)} \lambda_{j \mid i}^{T}\left(A_{i j} x_{i}-c_{i j}\right)-f_{i}^{*}\left(A_{i}^{T} \lambda_{i}\right)\right]+h\left(x_{i}, \lambda_{i}\right) \tag{39}
\end{equation*}
$$

where

$$
\begin{equation*}
h\left(x_{i}, \lambda_{i}\right)=\sum_{(i, j) \in E}\left(\frac{1}{2}\left\|A_{i j} x_{i}+A_{j i} x_{j}+c_{i j}\right\|^{2}-\frac{1}{2}\left\|\lambda_{i \mid j}-\lambda_{j \mid i}\right\|^{2}\right) \tag{40}
\end{equation*}
$$

## Distributed PCA

## PDMM for DCO

- At iteration $k$, the update scheme of PDMM is

$$
\begin{align*}
x_{i}^{k+1} & =x_{i}^{k}-\alpha \nabla_{x_{i}} L_{P} \\
\theta_{i}^{k+1} & =\theta_{i}^{k}+\alpha \nabla_{\theta_{i}} L_{P}  \tag{41}\\
\lambda_{i \mid j}^{k+1} & =\lambda_{i \mid j}^{k}+\left(c_{i j}-A_{j i} x_{j}^{k}-A_{i j} x_{i}^{k}\right), \quad \forall i \in V, j \in N(i)
\end{align*}
$$

where

$$
\begin{gather*}
\nabla_{x_{i}} L_{P}=-2 R_{u_{i}} x_{i}-\sum_{j \in N(i)} \lambda_{j \mid i}^{T} A_{i j}-2 \theta_{i} x_{i}+\sum_{(i, j) \in E} A_{i j}\left(A_{i j} x_{i}+A_{j i} x_{j}\right)  \tag{42}\\
\nabla_{\theta_{i}}\left(L_{P}\right)=1-2 x_{i}^{T} x_{i} \tag{43}
\end{gather*}
$$

## Distributed PCA

## PDMM for DCO

## Algorithm 1 PDMM

1: Initialize as $x_{i}^{0}, \lambda_{i \mid j}^{0}, \theta_{i}^{0}$ for all nodes
2: for $k=1$ to $K$ do
3: $\quad$ for $\begin{aligned} i=1 & \text { to } N \text { do } \\ x_{i}^{k+1} & =x_{i}^{k}-\alpha \nabla_{x_{i}} L_{P}\end{aligned}$
4: $\quad \theta_{i}^{k+1}=\theta_{i}^{k}+\alpha \nabla_{\theta_{i}} L_{P}$
$\lambda_{i \mid j}^{k+1}=\lambda_{i \mid j}^{k}+\left(c_{i j}-A_{j i} x_{j}^{k}-A_{i j} x_{i}^{k}\right), \forall i \in V, j \in N(i)$
5: end for
6: end for

## Distributed PCA <br> PDMM for DCO (Rayleigh Quotient)

- We introduce Rayleigh quotient to replace the constrain $x_{i}^{T} x_{i}=1$, and the optimization problem is

$$
\begin{aligned}
& \min \sum_{i \in V} \frac{-x_{i}^{T} R_{u} x_{i}}{x_{i}^{T} x_{i}} \\
& \text { s.t. } x_{i}=x_{j}, \forall(i, j) \in E
\end{aligned}
$$

## Distributed PCA <br> PDMM for DCO (Rayleigh Quotient)

## Algorithm 2 PDMM (Rayleigh Quotient)

1: Initialize as $x_{i}^{0}, \lambda_{i \mid j}^{0}$ for all nodes
2: for $k=1$ to $K$ do
3: $\quad$ for $i=1$ to $N$ do
$x_{i}^{k+1}=x_{i}^{k}-\alpha \nabla_{x_{i}} L_{P}$
4:

$$
\lambda_{i \mid j}^{k+1}=\lambda_{i \mid j}^{k}+\left(c_{i j}-A_{j i} x_{j}^{k}-A_{i j} x_{i}^{k}\right), \forall i \in V, j \in N(i)
$$

5: end for
6: end for

## Distributed PCA

## PDMM for DCO (Time-varing constrains)

$$
\begin{array}{ll}
\min & \sum_{i \in V}-x_{i}^{T} R_{u_{i}} x_{i}  \tag{45}\\
\text { s.t. } & A_{i j} x_{i}+A_{i j} x_{j}=c_{i j}, \forall(i, j) \in E
\end{array}
$$

where at iteration k

$$
\left\{\begin{array}{l}
A_{i j}=I, i<j  \tag{46}\\
A_{i j}=-І, \quad i>j \\
A_{i j}=\left(\begin{array}{ll}
x_{1}^{k-1} & \cdots
\end{array} x_{N}^{k-1}\right.
\end{array}\right), i=j
$$

## Distributed PCA <br> PDMM for DCO (Time-varing constrains)

## Algorithm 3 PDMM (Time-varing constrains)

1: Initialize as $x_{i}^{0}, \lambda_{i \mid j}^{0}$, $A_{i i}$ for all nodes
2: for $k=1$ to $K$ do
3: $\quad$ for $i=1$ to $N$ do
4:

$$
\begin{aligned}
& x_{i}^{k+1}=x_{i}^{k}-\alpha \nabla_{x_{i}} L_{P} \\
& \lambda_{i \mid j}^{k+1}=\lambda_{i \mid j}^{k}+\left(c_{i j}-A_{j i} x_{j}^{k}-A_{i j} x_{i}^{k}\right), \forall i \in V, j \in N(i)
\end{aligned}
$$

5: end for

$$
A_{i i}=\left(\begin{array}{lll}
x_{1}^{k-1} & \cdots & x_{N}^{k-1}
\end{array}\right)
$$

6: end for

## For Further Reading I

Benesty, Jacob, and Chen Jingdong. Study and design of differential microphone arrays. Vol. 6. Springer Science Business Media, 2012.

Benesty, Jacob, Jingdong Chen, and Israel Cohen. Design of Circular Differential Microphone Arrays. Vol. 12. Switzerland: Springer, 2015.

Chatelin, Franoise, ed. Eigenvalues of Matrices: Revised Edition. Society for Industrial and Applied Mathematics, 2012.

围 Wu, Sissi Xiaoxiao, et al. "A Review of Distributed Algorithms for Principal Component Analysis." Proceedings of the IEEE 106.8 (2018): 1321-1340.

T Scaglione, Anna, Roberto Pagliari, and Hamid Krim. "The decentralized estimation of the sample covariance." 2008 42nd Asilomar Conference on Signals, Systems and Computers. IEEE, 2008.

## For Further Reading II

盏 Qu, Yongming, et al. "Principal component analysis for dimension reduction in massive distributed data sets." Proceedings of IEEE International Conference on Data Mining (ICDM). 2002.

囦 Zhang, Guoqiang, and Richard Heusdens. "Bi-alternating direction method of multipliers over graphs." 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015.

