Research Summary

Jiawei Sun
Electrical and Computer Engineering
University of Michigan

September, 2019

Outline

(1) Differential Microphones Arrays based on Differential Equation

- Linear DMA
- Circular DMA
(2) Distributed Algorithms of PCA
- Backgrounding
- Average Consensus Algorithm
- Distributed PCA

Outline

(1) Differential Microphones Arrays based on Differential Equation - Linear DMA

- Circular DMA
(2) Distributed Algorithms of PCA
- Backgrounding
- Average Consensus Algorithm
- Distributed PCA

Linear DMA

Signal Model

- The basic mode of an uniform linear array (ULA) with M omnidirectional microphones is

$$
\begin{align*}
y_{m}(k) & =x_{m}(k)+v_{m}(k) \\
& =x\left(k-t-\tau_{m}\right)+v_{m}(k), m=1,2, \ldots, M \tag{1}
\end{align*}
$$

Figure: Uniform Linear Array

Linear DMA

Signal Model

- where $x_{m}(k)$ is the source signal, t is the time which it takes form the signal to the first microphone, τ_{m} is the delay between the m th and the first microphones. [1]
- In the STFT domain,(1) can be expressed as

$$
\begin{equation*}
Y_{m}(\omega)=X(\omega) e^{-j(m-1) \omega \tau_{0} \cos \theta}+V_{m}(\omega) \tag{2}
\end{equation*}
$$

Linear DMA

Signal Model

- In vectors form, we get

$$
\begin{align*}
y(\omega) & =\left[Y_{1}(\omega), Y_{2}(\omega), \ldots, Y_{M}(\omega)\right]^{T} \tag{3}\\
& =d(\omega, \cos \theta) X(\omega)+v(\omega) \tag{4}
\end{align*}
$$

where

$$
\begin{equation*}
d(\omega, \cos \theta)=\left[1, e^{-j \omega \tau_{0} \cos \theta}, \ldots, e^{-j(M-1) \omega \tau_{0} \cos \theta}\right]^{T} \tag{5}
\end{equation*}
$$

is the phase-delay vector of length M .

- In order to recover the desired signal $X(\omega)$ from $y(\omega)$, a complex weight $H_{m}^{*}(\omega)$ is designed and applied to the output of each microphone. Mathematically, the beamformers output is

$$
\begin{equation*}
Z(\omega)=\sum_{m=1}^{M} H_{m}^{*}(\omega) Y_{\mathrm{m}}(\omega)=h^{T}(\omega) y(\omega) \tag{6}
\end{equation*}
$$

Linear DMA

Beampatterns

- Mathematically, beampattern of a Nth-order DMA is written as

$$
\begin{align*}
B[h(\omega), \theta] & =d^{H}(\omega, \cos \theta) h(\omega) \tag{7}\\
& =\sum_{m=1}^{M} H_{m}(\omega) e^{j(m-1) \omega \tau_{0} \cos \theta} \tag{8}
\end{align*}
$$

Simplify (8) by McLaughlin expanion, we get

$$
\begin{equation*}
B_{N}(\theta)=\sum_{n=0}^{N} a_{N, n} \cos ^{n} \theta \tag{9}
\end{equation*}
$$

where ${ }_{N, n}, n=0,1, \ldots, N$ are real coefficients.

Linear DMA

Beampatterns

- In the direction of the desired signal, i.e., $\theta=0^{\circ}$, the directivity pattern must be equal to 1 . Therefore, we should have

$$
\begin{equation*}
\sum_{n=0}^{N} a_{N, n}=1 \tag{10}
\end{equation*}
$$

Linear DMA

- The second-order directivity patterns have the form:

$$
\begin{equation*}
B_{2}(\theta)=\left(1-a_{2,1}-a_{2,2}\right)+a_{2,1} \cos \theta+a_{2,2} \cos ^{2} \theta \tag{11}
\end{equation*}
$$

and they have 2 nulls at the angle θ_{1} and θ_{2}, so we can write differential equation about $\mathrm{a}_{2,1}$ and $\mathrm{a}_{2,2}$,

$$
\left\{\begin{array}{l}
\left(1-a_{2,1}-a_{2,2}\right)+a_{2,1} \cos \theta_{1}+a_{2,2} \cos ^{2} \theta_{1}=0 \tag{12}\\
\left(1-a_{2,1}-a_{2,2}\right)+a_{2,1} \cos \theta_{2}+a_{2,2} \cos ^{2} \theta_{2}=0
\end{array}\right.
$$

- By solving the equation, the most important shapes of patterns are as follows
- Dipole: $a_{2,1}=0, a_{2,2}=1$, nulls at $\cos \theta=0$.
- Cardioid: $a_{2,1}=a_{2,2}=\frac{1}{2}$, nulls at $\cos \theta=0$ and $\cos \theta=-1$.

Linear DMA

Linear equations solves beampattern coefficients

- As for Nth-order directivity patterns, they have N nulls at $\theta_{1}, \theta_{2}, \ldots, \theta_{N}$ and the directivity pattern is equal to 1 in the direction of the desired signal. Based on the known conditions, we get

$$
\left\{\begin{array}{c}
\sum_{n=0}^{N} a_{N, n}=1 \tag{13}\\
\sum_{n=0}^{N} a_{N, n} \cos ^{n} \theta_{1}=0 \\
\sum_{n=0}^{N} a_{N, n} \cos ^{n} \theta_{2}=0 \\
\vdots \\
\sum_{n=0}^{N} a_{N, n} \cos ^{n} \theta_{N}=0
\end{array}\right.
$$

Solve the simultaneous linear equations and get $a_{N, 0}, a_{N, 2}, \ldots, a_{N, N}$.

Linear DMA

Differential equations solves beampattern coefficients

- By (9) and the multiple-angle formula

$$
\begin{equation*}
\cos ^{n} \theta=\frac{1}{2^{n}} \sum_{k=0}^{n} C_{n}^{k} \cos (2 k-n) \theta \tag{14}
\end{equation*}
$$

we get,

$$
\begin{equation*}
B_{N}(\theta)=\sum_{n=0}^{N} b_{N, n} \cos n \theta \tag{15}
\end{equation*}
$$

Linear DMA

Differential equations solves beampattern coefficients

- Take the first-order equations as example, it is written as

$$
\begin{equation*}
B_{1}(\theta)=b_{1,0}+b_{1,1} \cos \theta \tag{16}
\end{equation*}
$$

As for a second-order constant coefficient differential equation,its corresponding characteristic equation is

$$
\begin{gather*}
y^{(2)}+n^{2} y=0 \tag{17}\\
r^{2}+n^{2}=0 \tag{18}
\end{gather*}
$$

so $r= \pm n i$, and its general solution is

$$
\begin{equation*}
y=C_{1} \cos (n \theta)+C_{2} \sin (n \theta) \tag{19}
\end{equation*}
$$

Linear DMA

Differential equations solves beampattern coefficients

- Characteristic equation of a Nth-order constant coefficient differential equation corresponding to Nth-order DMA is

$$
\begin{equation*}
r\left(r^{2}+1^{2}\right)\left(r^{2}+2^{2}\right) \ldots\left(r^{2}+N^{2}\right)=0 \tag{20}
\end{equation*}
$$

To solve $(2 N+1)$ th-order differential equation needs $2 N+1$ initial conditions.

Linear DMA

Differential equations solves beampattern coefficients

- The directivity pattern must be equal to 1 .

$$
\begin{equation*}
B_{N}\left(0^{\circ}\right)=1 \tag{21}
\end{equation*}
$$

Nth-order directivity patterns have N nulls at $\theta_{1}, \theta_{2}, \ldots, \theta_{N}$,

$$
\begin{equation*}
B_{N}\left(\theta_{1}\right)=0, B_{N}\left(\theta_{2}\right)=0, \ldots, B_{N}\left(\theta_{N}\right)=0 \tag{22}
\end{equation*}
$$

Its first derivative only exists $\sin (n \theta)$ and so on we can get the rest N initial condition,

$$
\begin{equation*}
B_{N}^{(1)}(0)=0, B_{N}^{(1)}(\pi)=0, B_{N}^{(2)}\left(\frac{\pi}{2}\right)=0, B_{N}^{(2)}\left(\frac{3 \pi}{2}\right)=0 \ldots \tag{23}
\end{equation*}
$$

Outline

(1) Differential Microphones Arrays based on Differential Equation

- Linear DMA
- Circular DMA

2 Distributed Algorithms of PCA

- Backgrounding
- Average Consensus Algorithm
- Distributed PCA

Circular DMA

Beampattern

- The beampattern of CDMA is defined as

$$
\begin{equation*}
B_{N}(\theta)=\sum_{n=0}^{N} a_{N, n} \cos ^{n}\left(\theta-\theta_{s}\right) \tag{24}
\end{equation*}
$$

where $\mathrm{a}_{N, n}, n=0,1, \ldots, N$ are real coefficients. In the direction of the desired signal, i.e., $\theta=\theta_{s}$, the directivity pattern must be equal to 1 [2].

Figure: Circular DMA

Circular DMA

Differential Equations Solve Circular DMA

- By (24) and the multiple-angle formula

$$
\begin{align*}
B_{N}\left(\theta-\theta_{s}\right) & =\sum_{n=0}^{N} b_{N, n} \cos n\left(\theta-\theta_{s}\right) \tag{25}\\
& =\sum_{n=0}^{N} b_{N, n} \cos n \theta_{s} \cos n \theta+b_{N, n} \sin n \theta_{s} \sin n \theta \tag{26}
\end{align*}
$$

Take the first-order equations as example, it is writtens as

$$
\begin{equation*}
B_{1}\left(\theta-\theta_{s}\right)=b_{1,0}+b_{1,1} \cos \theta_{s} \cos \theta+b_{1,1} \sin \theta_{s} \sin \theta \tag{27}
\end{equation*}
$$

When $b_{1,0}=C, C_{1}=b_{1,1} \cos \theta_{s}, C_{2}=b_{1,1} \sin \theta_{s}$, the solution of this differential equation is equal to (27).

Circular DMA

Differential Equations Solve Circular DMA

- To solve $(2 N+1)$ th-order differential equation needs $2 N+1$ initial conditions.

$$
\begin{equation*}
B_{N}\left(\theta_{s}\right)=1 \tag{28}
\end{equation*}
$$

Nth-order directivity patterns have N nulls at $\theta_{1}-\theta_{s}$, $\theta_{2}-\theta_{s}, \ldots, \theta_{N}-\theta_{s}$,

$$
\begin{equation*}
B_{N}\left(\theta_{1}-\theta_{s}\right)=0, B_{N}\left(\theta_{2}-\theta_{s}\right)=0, \ldots, B_{N}\left(\theta_{N}-\theta_{s}\right)=0 \tag{29}
\end{equation*}
$$

Besides, we can get the rest N initial conditions,

$$
\begin{align*}
& B_{N}^{(1)}\left(\theta_{s}\right)=0, B_{N}^{(1)}\left(\theta_{s}+\pi\right)=0 \\
& B_{N}^{(2)}\left(\theta_{s}+\frac{\pi}{2}\right)=0, B_{N}^{(2)}\left(\theta_{s}+\frac{3 \pi}{2}\right)=0 \ldots \tag{30}
\end{align*}
$$

